Hliník

Hliník (chemická značka Al, latinsky Aluminium) je velmi lehký kov bělavě šedé barvy, velmi dobrý vodič elektrického proudu, široce používaný v elektrotechnice a ve formě slitin v leteckém průmyslu a mnoha dalších aplikacích.

Základní fyzikálně-chemické vlastnosti

Neušlechtilý stříbřitě šedý, nestálý, kujný kov, elektricky velmi dobře vodivý. Při teplotách pod 1,18 K je supravodivý. Atomy tvoří kovové krystaly tvořené krychlovými plošně centrovanými elementárními buňkami, což odpovídá nejtěsnějšímu uspořádání kulových atomů. Uměle byly vytvořeny nebo počítačem namodelovány i alotropické modifikace s rozvolněnnější mřížkou.

Inzerce

Hliník je velmi dobře rozpustný ve zředěných kyselinách, koncentrovaná kyselina dusičná či kyselina sírová jej však stejně jako vzdušný kyslík pokryjí pasivační vrstvou oxidu. Také hydroxidy alkalických kovů snadno rozpouštějí kovový hliník za vzniku hlinitanů (AlO2).

Hliník a slitiny hliníku jsou velmi dobře svařitelné téměř všemi metodami svařování. Výjimkou je slitina dural, která je svařitelná obtížně.

Hliník byl v kovové formě izolován roku 1825 dánským fyzikem Hansem Christianem Ørstedem.

Výskyt v přírodě

Minerály na bázi oxidu hlinitého Al2O3 patří mezi velmi významné i ceněné. Korund je na 9. místě Mohsovy stupnice tvrdosti. Technický oxid hlinitý se nazývá také elektrit a je hojně využíván k výrobě brusného papíru.

Obě zmíněné formy korundu patří k nejvíce ceněným drahým kamenům na světě, ale mají i významné využití v technice. Safírové hroty vynikají svou tvrdostí a odolností a vybavují se jimi špičkové vědecké měřicí přístroje. Rubín je znám jako materiál pro konstrukci prvního laseru na světě. Titan-safírový laser vyniká extrémně krátkými pulsy (< 50 fs)

Výroba

Přestože hliník patří mezi prvky nejvíce zastoupené v zemské kůře, patřila jeho průmyslová výroba do ještě poměrně nedávné doby k velmi obtížným procesům. Je to především z toho důvodu, že elementární hliník nelze jednoduše metalurgicky vyredukovat z jeho rudy jako např. železo koksem ve vysoké peci. Teprve zvládnutí průmyslové elektrolýzy taveniny kovových rud umožnilo současnou mnohasettunovou roční produkci čistého hliníku.

Při elektrolýze se z taveniny směsi předem přečištěného bauxitu a kryolitu o teplotě asi 950 °C na katodě vylučuje elementární hliník, na grafitové anodě vzniká kyslík, který ihned reaguje s materiálem elektrody za vzniku toxického plynného oxidu uhelnatého, CO.

Na území někdejšího Československa byla roku 1933 zahájena výroba hliníkových plechů a později roku 1954 výroba spotřebního zboží z hliníkových fólií v Břidličné. Společnost ve výrobě nadále setrvává. Dále roku 1953 započala výroba hliníku ve slovenském Žiaru nad Hronom, kam se převážná většina bauxitu dovážela z Maďarska. Výroba hliníku Söderbergovou technologií zde byla ukončena v roce 1998.

Využití kovového hliníku

Předměty denní potřeby

Hliník nalézá uplatnění především díky své poměrně značné chemické odolnosti a nízké hmotnosti. Proto se z jeho slitin vyrábějí například některé drobné mince, ale i běžné kuchyňské nádobí a příbory. Po vyválcování do tenké folie se s ním setkáme pod názvem alobal při tepelné úpravě pokrmů nebo jako ochranného obalového materiálu pro nejrůznější aplikace. Ve stavebnictví se používají lisované hliníkové profily, ze kterých se vyrábějí např. okna a dveře.

Hliník jako vodič

Vzhledem k poměrně dobré elektrické vodivosti se hliníku užívá jako materiálu pro elektrické vodiče. Oproti použití mědi má ovšem některé nevýhody: Hliník je křehčí, vodič se např. opakovaným ohybem snadno zlomí. Průchodem proudu se zahřívá a zvětšuje svůj objem. Pokud je hliníkový vodič spojen mechanicky s jiným vodičem kupříkladu pomocí šroubu, pak toto roztažení nemůže probíhat všemi směry stejně. Není-li spoj optimálně navržen, dojde k plastické deformaci měkkého hliníku. Při ochlazení, tedy když proud přestane vodičem protékat, se naopak smrští rovnoměrně ve všech směrech, což způsobí, že se šroubované kontakty poněkud uvolní, čímž se zvýší jejich přechodový odpor, který následně vede ke zvýšenému zahřívání. Navíc se hliníkový vodič vlivem působení vzdušného kyslíku potahuje vrstvičkou nevodivého Al2O3 a vinou toho se přechodový odpor mezi vodičem a svorkovnicí dále zvyšuje. Hliníkové kontakty mají být proto pravidelně dotahovány, aby se zmenšilo nebezpečí vzniku požáru.

Tyto vlastnosti vedly v posledních letech k omezení používání hliníku ve prospěch mědi zejména v domovních rozvodech. Nadále se hliník jako vodič běžně používá v dálkových rozvodech a průmyslových aplikacích, které jsou pod profesionálním dohledem.

Slitiny hliníku

Podrobnější informace naleznete v článku Slitiny hliníku.

Nejdůležitější je však uplatnění hliníku ve formě slitin, z nichž bezesporu nejznámější je slitina s hořčíkem, mědí a manganem, známá jako dural. Tento materiál má oproti samotnému hliníku mnohem větší pevnost a tvrdost při zachování velmi malé hustoty. Zároveň jsou i značně odolné vůči korozi. Všechny uvedené vlastnosti předurčují dural jako ideální materiál pro letecký a automobilový průmysl, ale setkáme se s ním při výrobě výtahů, jízdních kol, lehkých žebříků a podobných aplikacích.

Sloučeniny hliníku a jejich význam

Bezesporu nejvýznamnější sloučeninou hliníku je oxid hlinitý, Al2O3. Tato látka se vyskytuje v řadě modifikací se zcela odlišnými fyzikálně-chemickými vlastnostmi.

  • Krystalický Al2O3 má název korund a k jeho základním vlastnostem patří mimořádná tvrdost a chemická odolnost. V přírodě se nachází v řadě různých modifikací, drahokamy safír a rubín jsou zmíněny v předchozí kapitole. Uměle vyráběný korund nalézá řadu praktických uplatnění, od výroby laserů po osazování hlavic geologických vrtných souprav a kovoobráběcích nástrojů pro práci s mimořádně odolnými materiály.
  • Chemicky připravený oxid hlinitý se označuje názvem alumina. Podle podmínek výroby vykazuje tento materiál různé fyzikální vlastnosti, základní typy aluminy se označují jako alfa, beta a gama. Nejvýznamnější uplatnění nalézá alumina v chemickém průmyslu jako inertní nosič katalyzátorů v organické i anorganické syntéze. Příkladem mohou být hydrogenační katalyzátory na bázi elementární platiny, pracující za teplot přes 300 °C a tlaků desítek atmosfér. I za těchto extrémních podmínek dosahuje životnost těchto katalytických systémů stovek až tisíců pracovních hodin.
  • Speciálně upravená alumina nanesená v tenké vrstvě na inertním nosiči slouží pro separaci organických sloučenin chromatografií na tenké vrstvě. Tato analytická technika je ekonomicky velmi nenáročná a nalézá uplatnění např. v kontrole průmyslového dělení směsí přírodních barviv a dalších typů sloučenin.

Chlorid hlinitý, AlCl3 je velmi významný průmyslový katalyzátor v oboru organické syntézy. Uplatňuje se zde jako Lewisovská kyselina, jejíž působením dochází vnášení alkylových skupin na aromatické jádro nebo halogenaci uhlovodíků do předem zvolené polohy. Reakce tohoto typu jsou souborně označovány termínem  Friedel-Craftsovy reakce, klasickým příkladem je výroba toluenu reakcí chloroformu s benzenem nebo syntéza styrenu z ethenu a benzenu.

Zdroj:

Wikipedie - Heslo: "Hliník". https://cs.wikipedia.org/wiki/Hlin%C3%ADk Stránka byla naposledy editována 5. 6. 2019 v 11:05. Kopie na oneindustry dne: 18. 6. 2019. Námi provedené změny jsou v textu označeny tmavě modře (v tomto textu konkrétně nic není).